Tensor product of dualizing complexes over a field

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A tensor product approach to the abstract partial fourier transforms over semi-direct product groups

In this article, by using a partial on locally compact semi-direct product groups, we present a compatible extension of the Fourier transform. As a consequence, we extend the fundamental theorems of Abelian Fourier transform to non-Abelian case.

متن کامل

A Note on Tensor Product of Graphs

Let $G$ and $H$ be graphs. The tensor product $Gotimes H$ of $G$ and $H$ has vertex set $V(Gotimes H)=V(G)times V(H)$ and edge set $E(Gotimes H)={(a,b)(c,d)| acin E(G):: and:: bdin E(H)}$. In this paper, some results on this product are obtained by which it is possible to compute the Wiener and Hyper Wiener indices of $K_n otimes G$.

متن کامل

RIGID DUALIZING COMPLEXES

Let $X$ be a sufficiently nice scheme. We survey some recent progress on dualizing complexes. It turns out that a complex in $kinj X$ is dualizing if and only if tensor product with it induces an equivalence of categories from Murfet's new category $kmpr X$ to the category $kinj X$. In these terms, it becomes interesting to wonder how to glue such equivalences.

متن کامل

Recognizing Dualizing Complexes

Let A be a noetherian local commutative ring and let M be a suitable complex of A-modules. This paper proves that M is a dualizing complex for A if and only if the trivial extension A ⋉M is a Gorenstein Differential Graded Algebra. As a corollary follows that A has a dualizing complex if and only if it is a quotient of a Gorenstein local Differential Graded Algebra. Let A be a noetherian local ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Commutative Algebra

سال: 2018

ISSN: 1939-2346

DOI: 10.1216/jca-2018-10-2-243